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MATERIALS SYNTHESIS

Bulk Materials

• Solid state synthesis – “shake & bake”

• Chemical vapor transport

• Sol Gel Synthesis

• Melt growth

Thin Films

• Chemical Vapor Deposition

• Laser Ablation

• Sputtering

• Molecular Beam Epitaxy

Nanomaterials

• Nanocrystals

• Carbon Nanotubes

• Nanowires

Just a few of the 
huge number of 
different methods!

Reading: West 4
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SOLID STATE SYNTHESIS
Mix starting materials, heat, compress …. presto!
• Historically the most common method to make polycrystalline samples.



SOLID STATE SYNTHESIS

relies on enhanced solid-state diffusion at high temps.

4MgO + 4Al2O3 →  4MgAl2O4

1. area of contact between the reacting solids

2. the rate of nucleation of the product phase

3. the rates of ion diffusion through the various phases

2Al3+ - 3Mg2+ + 4MgO →  MgAl2O4

3Mg2+ - 2Al3+ + 4Al2O3 →  3MgAl2O4

at MgO/MgAl2O4 interface:  

at Al2O3/MgAl2O4 interface:  

factors:
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CHEMICAL VAPOR TRANSPORT (CVT)

Crystal growth by the thermal transport of volatile compounds 

generated from nonvolatile elements or compounds.

• Popularized by Schafer (1971).

1. synthesis of new compounds
2. growth of large single crystals
3. purification of compounds

+ transport agent (often I2) 

tube furnace

sealed quartz tube

Ti(s) + 2I2(g)      TiI4(g)         Ti + S2 TiS2

TiI4(g) + S2(g)      TiS2(s) + 2I2(g)          
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Ti (using I2) 

Au (using I2) Typical transporting agents include:
I2, Br2, Cl2, HCl, NH4Cl, H2, H2O, TeCl4, AlCl3, CO, S2



SOL GEL (solution-gelation) PROCESS
Low-temp, solution phase method that uses hydrolysis and 

polycondensation reactions to form an inorganic network solid.

• makes ceramic and glassy materials, usually from M(OR)x solutions.  

M-OR + H2O       M-OH + ROH    (hydrolysis)

M-OR + M-OH        [M-O-M]n + ROH    (condensation)    

Green: normal drying

Blue: freeze drying

Red: supercritical drying
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SiO2 from tetraethyl orthosilicate (TEOS) 

sol gel

acid-catalyzed
reaction 

mechanism:
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aerogel

xerogel containing 
CdSe/CdS quantum 

dots
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MELT GROWTH
Crystallization from the liquid, without solvent.

→ Production of semiconductor grade silicon from silica (sand).

The Siemens process

SiO2 + 2C           Si + 2CO
2250°C

Si + 3HCl           SiHCl3 + H2

300°C

98-99%

(metallurgical grade)

2SiHCl3 Si + 2HCl + SiCl4
1150°C

99.999999999%

(semiconductor grade)

Siemens process makes 

polycrystalline SG-Si
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Czochralski (cho-HRAL-ski) process

CZ-Si

makes single crystal ingots from polycrystalline SG-Si

• good for making 
doped Si

• suffers from O and 
C impurities from the 
crucible 

>1420°C
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Bridgman-Stockbarger and float zone techniques

• melt touches nothing
→ fewer O and C impurities

• FZ ingots limited to ~200 mm

makes use of the greater 
solubility of impurities in 
the melt than the crystal
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SAND TO SILICON

H. Föll
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CHEMICAL VAPOR DEPOSITION (CVD)
Reactive thermolysis of volatile molecular precursors to grow a 

thin film layer.

a hot wall low-pressure CVD (LP-CVD) reactor:

• metals
• alloys
• oxides, nitrides, carbides
• semiconductors (III-V, II-VI)
• carbon (even diamond!)
• many others
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TYPES OF CVD

• atmospheric pressure CVD (AP-CVD)
• LP-CVD   >10-6 Torr
• ultrahigh vacuum (UHV-CVD)  <10-8 Torr 

by pressure:

by reactor type:

• hot wall
• cold wall

• plasma enhanced CVD (PE-CVD)
• laser-assisted CVD (LA-CVD)
• hot-wire CVD (HW-CVD)

by precursor degradation method:
hot wire system

plasma system



389

PE-CVD for SiGe growth

Hot wire CVD for a-Si

Danny Chrastina
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EXAMPLES

polysilicon

SiH4 → Si + 2H2 LP-CVD, 600-1000°C, 10-100s of nm min-1

silicon nitride (Si3N4)  

3SiH4 + 4NH3 → Si3N4 + 12H2 LP-CVD, 600-800°C, 10s of nm min-1

gallium arsenide (GaAs)

Ga(Me)3 + AsH3 → GaAs + 3CH4 LP-CVD, 400-800°C in H2 carrier gas

• example of metal organic CVD (MO-CVD)
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IMPORTANT STEPS IN CVD

physisorption, chemisorption → reaction → nucleation → growth
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GaAs: Overall Reaction Pathway (350-500°C)
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PULSED LASER DEPOSITION (PLD)
Stoichiometric mass transfer by ablation of a solid target using a 

pulsed laser in HV or UHV.

good for materials of complex 
stoichiometry



Vapor-Liquid-Solid Nanowire Growth

metal 
catalysts

alloy
liquid

vapor
nanowire

Alloying

Nucleation

Growth

I              II               III         

I

II

III

Unidirectional growth is the consequence of an anisotropy in solid-liquid interfacial energy.

Y. Wu et al. J. Am. Chem. Soc. 2001, 123, 3165

800 deg. In-situ TEM





Nanowires grown by PLD



Korgel Group, UT, Austin, Department of Chemical Engineering

Solution-liquid-solid (SLS) nanowire growth
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SPUTTERING
Bombardment of high-energy ions (usually argon) ejects atoms 

from a negatively-charged source to create a thin film coating.

• vacuum (10-7 T), 
line-of-sight method 

• argon ions created by high 
voltage dc or rf plasma

• produces hard, dense 
coatings 

negative
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400
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MOLECULAR BEAM EPITAXY (MBE)
UHV technique for producing very high quality epitaxial layers 

with monolayer thickness control.

• ultrahigh vacuum (10-10 Torr), 
medium temp, line-of-sight 
method 

• UHV gives long mean free path 
→ “molecular beams” and 
ultrapure crystals

• slow growth rate (1 ML s-1) 
promotes extremely high quality 
crystals

• very expensive
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Brookhaven Nat’l Lab
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Reflection high-energy electron diffraction (RHEED)

3-100 keV electrons used to monitor monolayer growth
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• Ewald sphere crosses many lattice rods, resulting in many 
spots separated by small diffraction angle differences. 
However, few of these are close to the grazing exit angles, 
so only a few spots are seen on the RHEED screen.

• The crossing of Ewald sphere with lattice rod can be very 
poorly defined  RHEED spots are broadened into vertical 
streaks

wave vector of 50 keV electron ~120 Å-1
 large Ewald sphere

no diffraction condition in 3rd dimension  reciprocal lattice rods



405https://en.wikipedia.org/wiki/Reflection_high-energy_electron_diffraction
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SAFIRE
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GaAs

AlAs

SC multilayer stack – “multiple quantum well” – grown by MBE
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QUANTUM WELLS

• can design transition energies

• high radiative efficiency

• low laser thresholds

• low surface recombination

A finite potential well with only discrete energy levels.
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MULTIJUNCTION SOLAR CELLS



410
William R. Wiley Environmental Molecular Sciences Laboratory (PNNL)
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SEMICONDUCTOR QUANTUM DOTS
Nanometer size crystals with size-dependent properties.



Synthesis of colloidal QDs

http://nanocluster.mit.edu/research.php

Synthesis Goals:

• monodispersity

• crystallinity

• size control

• shape control

• doping

• surface passivation

• colloidal stability

crystalline 

inorganic core

oily organic

ligand shell
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COLLOIDAL SC QUANTUM DOTS

oleate-capped QDs

PbO + 2OA → Pb(OA)2 + H2O 

Pb(OA)2 + TOP-Se → PbSe

+ by-products 

for PbSe quantum dots

100-350°C



Hot injection method

Temp

Time

inject TOP-Se

nucleation

growth
quench

Pb(OA)2 + (C8H17)3PSe                            PbSe dots
ODE 

180°C

5% polydispersity
(unit cell roughness)



Native surface ligands

Oleic acid

TOPO DDT

Functions:

• control size and shape

• prevent aggregation

• passivate surface states  strong PL

• doping?

• isolate QD from its environment (chemical stability)



QUANTUM CONFINEMENT

energy gap depends on 
size - “particle in a box”

discrete e- transitions -
“artificial atoms”



smaller dots → larger bandgap → bluer absorption & emission
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MULTIPLE EXCITON GENERATION

larger currents for solar cells



419

NUCLEATION

Nucleation = localized creation of a distinct thermodynamic phase.

simple examples: liquid in gas, solid in liquid, solid in gas, ZB in WZ

heterogeneous nucleation: nucleation assisted by a nucleation site, 
usually a surface (e.g., substrate, suspended particle, dust, etc.) 

homogeneous nucleation: nucleation without a nucleation site. Harder 
to achieve than heterogeneous nucleation.

The driving force for nucleation is 
the lowering of free energy.

e.g., freezing

G = H – TS



Freezing of supercooled liquids is thermodynamically favored

but kinetically hindered

SUPERCOOLING
supersaturation
energetics
kinetics

Nucleation

and

Growth



NUCLEATION and GROWTH

consider a spherical amorphous solid nucleating from a 
homogeneous supersaturated liquid: 
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OSTWALD RIPENING

Initially the solid particles draw their material from the solution/melt. 
Later, as the solution/melt becomes depleted, the particles compete with 

each other for growth. In Ostwald ripening, small particles shrink and 
supply atoms to larger particles, which grow. 

time

thermodynamically driven - atoms on surface are less stable than atoms 
in the bulk b/c lower coordination number (poorer bonding), so system 
can lower energy by reducing surface area. 

1

time



OSTWALD RIPENING

consider two spherical nuclei w/ N1 and N – N1 atoms (N constant):

with atomic volume,
2/3

2/3 2/3

1 1 1 1

3
( , ) 4 ( )

4
vG N N N N G N N N



 
         

 

minimum G occurs when the two equal spheres combine into one 
big sphere:

nucleus 1

dissolves     grows

2/3

1/3 2/33
4 (2 1)

4
G N



 
    

 
423

N



CARBON NANOTUBES: ARC DISCHARGE
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LASER ABLATION of CNTs
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CVD of CNTs

426
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Science 19 November 2004:

Vol. 306. no. 5700, pp. 1362 - 1364 

Water-Assisted Highly Efficient Synthesis of Impurity-Free 

Single-Walled Carbon Nanotubes 
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http://www.sciencemag.org/content/vol306/issue5700/images/large/306_1362_F1.jpeg
http://www.sciencemag.org/content/vol306/issue5700/images/large/306_1362_F1.jpeg


CNT DEVICES: FIELD EFFECT TRANSISTOR
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CNT-BASED LOGIC
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CNT FIELD EMITTERS
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